Harmonic distributions for equitable partitions of a hypercube

Jong Yoon Hyun

IMS, Ewha Womans University

Nov. 17, 2012

CONTENTS

Introduction

Main results

3 Examples

Introduction

Basic definitions on equitable partitions

- Q_n : the set of (binary) words of length n, called an n dimensional hypercube or an n-cube.
- $C \subseteq Q_n$: a binary code of length n
- For $u \in Q_n$, supp $(u) = \{i : u_i \neq 0\}$, u = supp(u).
- w(u) = |supp(u)| = |u|, d(u, v) = w(u v).

Equitable partitions

• Let $\pi = \{C_1, C_2, \ldots, C_r\}$ be a partition of Q_n into $r \geq 2$ nonempty parts. We say that $\pi = \{C_1, C_2, \ldots, C_r\}$ is an equitable partition of Q_n with quotient matrix $B = (b_{ij})_{r \times r}$ if for all i and j, any word in C_i has exactly b_{ij} neighbors in C_j .

It should be mentioned that b_{ij} does not depend on the choice of words in C_i .

- D: the adjacent matrix of Q_n
- 1. $Spec(D) = \{n 2|u| : u \in Q_n\}.$
- 2. $n \in Spec(B) \subseteq Spec(D)$.
- 3. *B* is diagonalizable.

Examples of an equitable bipartition

In the 3-cube, consider the following quotient matrices

- $\bullet \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right)$
- $\bullet \left(\begin{array}{cc} 0 & 3 \\ 1 & 2 \end{array}\right)$
- $\begin{pmatrix} 0 & n \\ 1 & n-1 \end{pmatrix}$, where $n=2^m-1, m \geq 2 \leftarrow$ a perfect code.

If $B = \begin{pmatrix} i & j \\ k & l \end{pmatrix}$ is a quotient matrix of Q_n , then $Spec(B) = \{n, i - k\}$.

Jong Yoon Hyun (IMS)

Completely regular codes

For $C \subseteq Q_n$ and $u \in Q_n$,

- $\bullet \ d(u,C) = \min\{d(u,v) : v \in C\}.$
- $\rho(C) = \rho = \max\{d(u, C) : u \in Q_n\}$: the covering radius of C.
- $C(l) = \{u \in Q_n : d(u, C) = l\}$. In particular, C(0) = C.
- A partition $\pi(C) = \{C(0), C(1), \dots, C(\rho)\}$ of Q_n : the distance partition of C.
- $C \subseteq Q_n$: a completely regular code with covering radius ρ if the distance partition $\pi(C)$ is equitable.

Jong Yoon Hyun (IMS)

perfect codes \hookrightarrow completely regular codes \hookrightarrow equitable partitions.

Harmonic spaces

- S_k : the sphere of radius k centered at zero word.
- $\mathbb{R}S_k$: the free real vector space spanned by S_k .
- For $f \in \mathbb{R}S_k$,

$$f = \sum_{u \in S_k} f(u)u.$$

• For $f \in \mathbb{R}S_k$ and $S \subseteq \{1, 2, ..., n\}$, we define

$$\tilde{f}(u) = \sum_{u \in S} \left(\sum_{v \in S_k, v \subseteq u} f(v) \right) u = \sum_{v \in S_k, v \subseteq u} f(v).$$

Jong Yoon Hyun (IMS)

Harmonic spaces

ullet The differentiation γ is the operator defined by linearity from

$$\gamma: S_k \to S_{k-1}, u \mapsto \sum_{v \in S_{k-1}, v \subseteq u} v.$$

- $Harm_k$ is defined by the kernel of γ , i.e., $Harm_k = Ker(\gamma|_{\mathbb{R}S_k}) \ni a$ harmonic function of degree k.
- $h \in Harm_k$ iff $\sum_{u \in S_k, v \subseteq u} h(u) = 0$ for all $v \in S_k$.

Jong Yoon Hyun (IMS)

Harmonic distributions

$$f,g:Q_n\to\mathbb{R}$$
.

• The harmonic weight enumerator for f of Q_n (attached to a harmonic function h of degree k):

$$W_{f,h}(x,y) = \sum_{u \in Q_n} f(u)\tilde{h}(u)x^{n-|u|-k}y^{|u|-k}.$$

If f is the characteristic function of a code C, then we simply denote it by $W_{C,h}(x,y)$, first introduced by Bachoc.

- Harmonic distributions:
- (i) The harmonic distribution $(A_0(f;h),A_1(f;h),\ldots,A_n(f;h))$ for f of Q_n

$$A_i(f;h) = \sum_{u \in S_i} f(u)\tilde{h}(u) = \sum_{u \in S_i} f(u)h(u).$$

(ii) The harmonic distribution $(A_0(f,g;h),A_1(f,g;h),\ldots,A_n(f,g;h))$ for f and g of Q_n

$$A_i(f,g;h) = \sum_{u,v \in S_i} f(u)g(v)\tilde{h}(u+v).$$

Harmonic distributions for eigenfunction of D

Proposition

Let f be an eigenfunction of D with eigenvalue λ , C a code in Q_n and h in $Harm_k$. Then

$$W_{f,h}(x,y) = (x+y)^{\frac{n+\lambda}{2}-k} (x-y)^{\frac{n-\lambda}{2}-k} \sum_{u \in S_k} f(u)h(u),$$

$$\sum_{u \in Q_{n}, v \in C} f(u)\tilde{h}(u+v)x^{n-|u+v|-k}y^{|u+v|-k}
= (x+y)^{\frac{n+\lambda}{2}-k} (x-y)^{\frac{n-\lambda}{2}-k} \sum_{u \in Q_{n}, v \in C, u+v \in S_{k}} f(u)\tilde{h}(u+v).$$

Jong Yoon Hvun (IMS) Nov. 17, 2012 11/17

Orthogonal array, t-design

- An $M \times n$ matrix A with entries from Q_1 is called an <u>orthogonal array</u> of size M, n constraints, 2 levels, strength t and index λ if any set of columns of A contains all 2^k possible vectors exactly λ times.
- A collection \mathcal{B} of k-subsets of $\{1, 2, ..., n\}$ is a $\underline{t$ -design if every t-element subset lies in a constant number of elements in \mathcal{B} .
- Bachoc made use of the harmonic weight enumerator for a linear code to connect with *t*-designs based on the result of Delsarte.

Main results

Harmonic distributions for equitable partitions

Theorem

Let $(C_1, C_2, ..., C_r)$ be an equitable partition of Q_n with quotient matrix B. For j = 1, 2, ..., r, let $(\alpha_{j1}, \alpha_{j2}, ..., \alpha_{jr})^T$ be an eigenvector of B with eigenvalue λ_j . Let $h \in Harm_k$. Then for s, t = 1, 2, ..., r, we have

$$W_{C_s,h}(x,y) = \sum_{j=1}^r \sum_{i=1}^r \beta_{si} \alpha_{ij} (x+y)^{\frac{1}{2}(n+\lambda_i)-k} (x-y)^{\frac{1}{2}(n-\lambda_i)-k} \sum_{u \in C_j \cap S_k} h(u),$$

$$\begin{split} \sum_{u \in C_s, v \in C_t} \tilde{h}(u+v) x^{n-|u+v|-k} y^{|u+v|-k} \\ &= \sum_{j=1}^r \sum_{i=1}^r \beta_{si} \alpha_{ij} (x+y)^{\frac{n+\lambda_i}{2}-k} (x-y)^{\frac{n-\lambda_i}{2}-k} \sum_{u \in C_j, v \in C_t, u+v \in S_k} \tilde{h}(u+v), \end{split}$$

where β_{ij} is an (i,j) entry of $[\alpha_{ij}]^{-1}$.

Jong Yoon Hyun (IMS) Nov. 17. 2012

Orthogonal array

Theorem

Let $(C_1, C_2, ..., C_r)$ be an equitable partition of Q_n . Then every cell forms an orthogonal array of strength at least

$$\frac{n-\lambda}{2}-1,$$

where λ is the second largest eigenvalue of B.

• We remark that we can precisely compute the strength of cells defending on the membership of the zero word.

Jong Yoon Hyun (IMS)

t-design

Theorem

Let (C_1, C_2, \ldots, C_r) be an equitable partition of Q_n . Then the set of words of any fixed weight in each cell C_i forms a t-design if and only if $\sum_{C_i \cap S_k} h(u)$ is vanishing for $i = 1, 2, \ldots, r$ and $k = 1, 2, \ldots, t$. In particular, if the size of C_i in S_k is either vanishing or $\binom{n}{k}$ for $i = 1, 2, \ldots, r$ and $k = 1, 2, \ldots, t$, then the set of words of any fixed weight in every cell C_i forms a t-design.

Example

(1) Let (C_1, C_2) be an equitable bipartition of Q_n with quotient matrix $B = \begin{bmatrix} s & n-s \\ t & n-t \end{bmatrix}$. The eigenvalues of B are n, s-t and

$$[\alpha_{ij}] = \begin{bmatrix} 1 & 1 \\ -n+s & t \end{bmatrix}, \ [\beta_{ij}] = \frac{1}{n-s+t} \begin{bmatrix} t & -1 \\ n-s & 1 \end{bmatrix}.$$

• Every cell forms an orthogonal array of strength $\frac{n-s+t}{2}-1$.

Jong Yoon Hyun (IMS)

If $k \geq 1$, then

$$W_{C_1,h}(x,y) = \frac{t}{n-s+t} (x+y)^{n-k} (x-y)^{-k} \sum_{u \in C_1 \cap S_k} h(u) + \frac{n-s}{n-s+t} (x+y)^{\frac{n+s-t}{2}-k} (x-y)^{\frac{n-s+t}{2}-k} \sum_{u \in C_1 \cap S_k} h(u),$$

$$W_{C_2,h}(x,y) = \frac{t}{n-s+t} (x+y)^{n-k} (x-y)^{-k} \sum_{u \in C_1 \cap S_k} h(u) - \frac{n-s}{n-s+t} (x+y)^{\frac{n+s-t}{2}-k} (x-y)^{\frac{n-s+t}{2}-k} \sum_{u \in C_1 \cap S_k} h(u).$$

- If $d(C_1) = 2$, then $W_{C_i,h}(x,y) = 0$ for i = 1, 2, k = 1. In this case, the set of words of any fixed weight in the cells C_i , i = 1, 2 forms a 1-design.
- If $d(C_1) = 3$, then the set of words of any fixed weight in the cells C_i , i = 1, 2, k = 1, 2 forms a 2-design.

4 D > 4 B > 4 E > 9 C